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Neuron models

What characterizes neurons’ activity? Neurons are electrically
excitable cells that communicate through the emission of action
potentials (spikes): stereotyped membrane potential electrical

impulses. They encode information in the way spikes are emitted
through:

@ the answer to specific simple stimuli (excitability properties)
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Neuron models

What characterizes neurons’ activity? Neurons are electrically
excitable cells that communicate through the emission of action
potentials (spikes): stereotyped membrane potential electrical
impulses. They encode information in the way spikes are emitted
through:

@ the answer to specific simple stimuli (excitability properties)
@ and the spike pattern fired,

e often related to properties of the interspike behavior (e.g.: sub-
threshold oscillations) .




Neuron models

Different spike patterns
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Neuron models

Phenomenological Neuron Models

Aimed to reproduce the typical behaviors of nerve cells in response
to different stimuli:

Excitability properties of neurons

@ Frequency preference property
@ subthreshold oscillations,
°

Spike patterns fired



Neuron models

Neuron and Dynamical Systems

The main excitability properties can be linked with bifurcations of
dynamical systems for

e Continuous dynamical systems: detailed neuron models and
their reductions (Rinzel, Ermentrout, Guckenheimer, ...).

@ Discrete dynamical systems: map-based models (Caselles, Rulkov,

Hybrid dynamical systems

Integrate-and-fire neuron models combine:

@ A continuous dynamical system (ordinary differential equations)
accounting for input integration

@ A discrete dynamical system (map iteration) accounting for
spike emission.




Neuron models

Classical Integrate-and-Fire Neurons

‘fi—’g:—v—kI
v = 0 = Spike!

Louis Lapicque, 1907
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Classical Integrate-and-Fire Neurons

%:—v+]

v = 0 = Spike!

e

v=—v—w+1
w = a(bv — w)

Wehmeier et al, 1989



Neuron models

Classical Integrate-and-Fire Neurons

‘fi—’;:—v—FI
v = 0 = Spike!

N

=—v—w+1 ’I')=’U2+I
= a(bv — w) v=e’—v+1

e.g. Ermentrout Kopell, 1982, Fourcaud-Trocme et al 2003



Neuron models

Classical Integrate-and-Fire Neurons

%:—U+I
v = 0 = Spike!

N

b=—v—w+I| | 9=0v"+1
w = a(bv — w) v=e”—v+1

N

Nonlinear adaptive
neuron models

Izhikevich, 2003 & Brette Gerstner 2005
Izhikevich (2003) Brette & Gerstner (2005)

v=v2—w+ v=e"—v—-—w+/
w = a(bv — w) w = a(bv — w)



One-dimensional models
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Neuron models

x = F(t,x) F:R®?=R
lim x(s) = 0, if x(t)=1

\J l ot
Output spike train

Definition [Firing map]
®:R— R, &(t) =min{s > t: x(s;t,0) =1}

Dy ={teR: Hdest x(s;t,0)=1}
t, = ®"(t) = min{s > ®"71(t) : x(s; d"7I(t),0) = 1}



Neuron models

Perfect Integrator Model
x = f(t) (PI)
Leaky Integrate-and-Fire
x = —ox + f(t) (LIF)

Non-linear models
x = F(t,x)

@ Mathematical analysis of one-dimensional IF models was performed e.g.
in [R.Brette, 2004], [H.Carrillo, F.A.Ongay, 2001], [T.Gedeon, M.Holzer,
2004], [W. Marzantowicz, J.S., 2011], [W. Marzantowicz, J.S., 2015] and
[P. Kasprzak, A. Nawrocki, J. S., 2015] (with focus on periodic and almost-
periodic input functions)



Bidimensional integrate-and-fire models
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Bidimensional integrate-and-fire models:

v = F(v)—w+/ (1)
w = a(bv—w) (2)
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Neuron models

Bidimensional integrate-and-fire models:

v = F(v)—w+/ (1)
w = a(bv—w) (2)

A spike is emitted at time t* such that

lim v(t) =00
t—t*—

At the moment of the spike we reset:
v(t*T) — v, w(t*) — yw(t*) +d
@ The adaptation map: d(wp) = yw(t*™) + d, (vg, wp)-the initial
condition of the solution (v(t), w(t)) which spikes at t*

[ Examples include adaptive exponential model (F(v) = e¥—v), quadratic
adaptive model (F(v) = v?) and quartic model (F(v) = v* + 2av)



Neuron models

Behaviors of the Quartic Model

(i) Tonic Spiking (i) Phasic Spiking (iii) Tonic Bursting (iv) Phasic Bursting
(v) Mixed Mode (vi) Spike Freq. Adapt. (vii) Class | Excitability (viii) Class Il Excitability

JULLUL ML o L

(ix) Spike Latency .
(x) Damped Subthr. Oscill. (xi) Resonator (i) Integrator

(xvi) Bistability

(xiii) Rebound Spike (xiv) Rebound Burst (xv) Threshold Variability
el v
(xvii) Depol. After-Pot. (xix) Mixed chatter/C1 exc.  (xviii) Self-Sustained Oscill.  (xx) Purely Oscill. mode
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Geometric mechanism for MMO

The model can display complex dynamics including Mixed-Mode
Oscillations and Mixed-Mode Bursting Oscillations (MM(B)O)
that are sequences of spikes interspersed by small subthreshold
oscillations.
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Geometric mechanism for MMO

The model can display complex dynamics including Mixed-Mode
Oscillations and Mixed-Mode Bursting Oscillations (MM(B)O)
that are sequences of spikes interspersed by small subthreshold
oscillations.

MM(B)Os so far have been investigated in 3D and higher
dimensional systems ([M. Desroches et al., 2012],
[M. Krupa et al., 2012], [T. Vo et al., 2012]).

In such hybrid models they have never been observed before.

From the neuroscience point of view, they have been evidenced in
Hodgin-Huxley model ([J. Rubin, M.Wechselberger, 2007],

[J. Rubin, M.Wechselberger, 2008]) and in the coupled
FitzHugh-Nagumo systems ([N. Berglund, D. Landon, 2012],

[M. Desroches et al., 2008]).



Geometric mechanism for MMO

Another (classical) example are chemical reactions:
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Bromide ion electrode potential in the Belousov—Zhabotinsky reaction; figure
from [J.L. Hudson et al., 1979]



Geometric mechanism for MMO

Our aim was to show that they also occur in 2D integrate-and-fire
models through the simple geometric mechanism.

[joint work with J. Touboul (Mathematical Neuroscience Lab and EPI
MYCENAE) and A. Vidal (LaMME, Univ Evry and EPI MYCENAE)]
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Stable manifold

Saddle

Unstable focus

Stable manifold

Unstable focus
v




Geometric mechanism for MMO

Mixed-Mode Oscillations (MMOs, slow oscillations interspersed
with spikes or bursts):




Geometric mechanism for MMO

Bidimensional integrate-and-fire models were studied in
[R. Brette, W. Gerstner, 2005], [E.lzhikevich, 2003],
[N.Jimenez et al., 2013] and [J. Touboul, R.Brette, 2009].



Geometric mechanism for MMO

Bidimensional integrate-and-fire models were studied in
[R. Brette, W. Gerstner, 2005], [E.lzhikevich, 2003],
[N.Jimenez et al., 2013] and [J. Touboul, R.Brette, 2009].

We assume that:
o F € C3(R) (at least)
@ F s strictly convex
e lim,_,_ F'(v) <0
@ there exist £ > 0 and § > 0 such that:
im £ 5

v—oo y2te T




Geometric mechanism for MMO
©00000000000

The adaptation map

We define:
@ D the set of w s.t. the solution starting from (v,, w) spikes.

@ ® : D — R the function such that ®(w) is the after-spike
adaptation value.




Geometric mechanism for MMO
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Definition [Adaptation map]

The adaptation map & associates to a value of the adaptation vari-
able w the value of the adaptation variable after reset:

o(w) = yW(t"; v, w) + d,

where (V(t; v, w), W(t; v, w)) is the solution of the system (1)-(2)
with initial condition (v,, w) at time t, and t* is the value at which
V(t; v,, w) diverges.




Geometric mechanism for MMO
080000000000

Definition [Adaptation map]

The adaptation map & associates to a value of the adaptation vari-
able w the value of the adaptation variable after reset:

o(w) = yW(t"; v, w) + d,

where (V(t; v, w), W(t; v, w)) is the solution of the system (1)-(2)
with initial condition (v,, w) at time t, and t* is the value at which
V(t; v,, w) diverges.

Let D = {wi, wo, ...} be the set of intersections of the line v = vg
with SMSFP. Then ® : R\ D — R is well-defined.



Geometric mechanism for MMO
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Phase Space Adaptation Map
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Geometric mechanism for MMO
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Remark
Suppose that (v(t),w(t)) is the spiking solution starting from
(v, wo) and let {t,}n>0 be the sequence of spike times for this so-
lution. By {w,}n>0 denote the values of the adaptation variable w
at spikes, i.e.

wn = w(ty) = yw(ty) +d
Then the adaptation map satisfies

d(wp) = Wpi1




Geometric mechanism for MMO
000800000000

Remark
Suppose that (v(t),w(t)) is the spiking solution starting from
(v, wo) and let {t,}n>0 be the sequence of spike times for this so-
lution. By {w,}n>0 denote the values of the adaptation variable w
at spikes, i.e.

wo = w(ty) = yw(t;) +d

Then the adaptation map satisfies

d(wp) = Wpi1

The spike train can be qualitatively described via iterations of ®,
with fixed points of ® corresponding to tonic, regular spiking and
periodic orbits to bursts. Thus the study of the dynamics of ®
allows to discriminate between different spiking patterns.
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Rl [T

(figures from [J. Touboul, R.Brette, 2009])



Geometric mechanism for MMO
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i a @ (W;)iz1...p - intersections of the reset
i line {v = v,} with SMSFP
w2 @ """ @ pi- the index such that (w;)i<p, are below
05 ; w - . —
/ - ‘:_/ the v-nullcline and (w;)i>p, are above
w1 7 . . .
o @ (/i)i=0...p+1 - intervals with endpoints w;
or 3 @ «, (3 - the value of w after a spike
for an initial condition on the upper
and, respectively, lower branch of UMSFP



Neuron models Geometric mechanism for MMO i Conclusions
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Theorem
The adaptation map has the following properties:
@ it is defined for allw € D =R\ {w;;i=1---p}
@ its regular (at least C!) everywhere except the points (w;)i=1...,

@ at the boundaries of the definition domain D, {w;;i=1---p},
the map has well-defined and distinct left and right limits:

lim . - ®w)=aqa, lim, . d(w)=p8, i<m

=

IimW —w; O(w) =B, |i +(D( )=a, j>p
@ the derivative ®'(w) diverges at the discontinuity points:

IimW_>Wl_i P(w)y=00 i<p
Iimw—)wl.i Y (w)=—-00 i>p



Geometric mechanism for MMO
000000080000

@ forw < min{%, wi, w**} we have ®(w) > yw +d > w
@ o(w) is convex in the left-neighbourhood of w; (and concave
in the right-neighbourhood)

@ &(w) has a horizontal plateau for w — oo provided that

lim F'(v) < —a(b+ v2)

V——00




Geometric mechanism for MMO
000000008000

The divergence of the derivative lim,,_,,, ®'(w) = oo is due to the
magnitudes of the eigenvalues v > 0 and p < 0 of the saddle fixed
point: |v| —pu >0

+ /
I f Smooth
conjugacy /
Linearized
system



Geometric mechanism for MMO
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Assume that the line v = v, has two intersections with SMSFP: wy
and ws, with wy < ws.



Geometric mechanism for MMO
000000000800

Assume that the line v = v, has two intersections with SMSFP: wy
and wo, with wy < ws. We distinguish the following cases:

L B<wm <a<w
I/ B<w < wy < wo < Il o< w, <w . &(B) >
17 B<a<w N we <a<w L ®(8) <

1" i < B< «

o Vaw<wm<f<a
o Vb wm <f<wm<a

Ve mp < f<a<w



Geometric mechanism for MMO
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Quartic model F(v) = v* + 2cv with parameter values: a=0.1, b=1,
c=01,1=-3(a/4)**(2a—1)+0.1~0.1175 and v, = 0.1158
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Rotation theory

Firstly, let us assume that
L B<w <a<w

The above means that the identity line passes through the gap at
wy and that in the interval (—oo, a] (where the dynamics
concentrates) there is only one discontinuity point wj.

The analysis of ® will be cut to the invariant interval [x, ], where
x = 3 when ®(8) > 3 or x = wr when ®(5) < 8 and wr < S is
the greatest fixed point of ® in (—o0, 3)



Rotation theory

Now let us add the following two assumptions about ¢:
I a<w <w

. o(B) > 3

Proposition

Under I. and Il., whenever ® : [x,a] \ {w1} — [x, ] has a peri-
odic orbit (with period q > 1), this periodic orbit exhibits MMBO.
However, this orbit does not need to be stable.




Rotation theory

Assume |, Il. and Ill.

B e

We analyze ¢ : [3,a] — [, a]:
o ®(w) is piecewise C! on [, a] with a single jump discontinuity
at w = wy € (5, ).
° IimW_>Wf d'(w) = lim,,_, d'(w) = o0

° IimW_>W1+ ®(w) = 3 and Iimwﬂwl_ d(w) =«



Rotation theory

According to [J.P.Keener, 1980] anal-
ysis of such maps can be performed
separately for the following cases:

@ non-overlapping case:
O(a) < d(B)
@ overlapping case:
O(ar) > &(B)
@ (a) = o(B)

with the help of the rotation number

2

o) = i = i 3 (90



Rotation theory
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Non-overlapping case: |, I, lll. and IV. a ¢(«a) < ®(5)

We consider the lift ¥ : R — R of ¢ by identifying a with 8 and
requiring that W(w + k(o — 3)) = W(w) + k(o — B3), for all k € Z
and w € R.

Theorem (cf. [R.Brette, 2003] and [F.Rhodes,Ch.Thompson, 1986])

The rotation number

. V(w) —w
lim ———— =p

n—oo n(a— )
exists and does not depend on w € [« 5].

Moreover, if o = 2 € Q, then all orbits {®"(w)}, w € [B,q],
tend to a periodic orbit with the same period q and if o € Q, then
all orbits have the same limit set which is either the whole [, ] or
some Cantor subset of it (meaning, in particular there are no periodic
orbits).




Rotation theory
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@ o =0 modl = tonic, regular spiking (for every initial
condition wy € [B, o] \ {w1})

e p=p/qge Q\Z = MMBO (with periodicity of interspike-
intervals and interspersing oscillations)

@ o€ R\ Q = no periodic orbits and we observe chaos.
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Rotation theory
000800000
Proposition

Under I, I, I, IV.a., if ®(8) > wy and ®(a) < wy then ® has a periodic
orbit of period two, which exhibits MMBO.

a(9) |

4)((;) |

.2 L L L L L L L L
[ 50 100 150 200 250 300 350 400 450
t




Rotation theory
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If W: R — R is a non-decreasing map of degree-one (i.e. in our case
V(w + (a— B)) = V(w) + (o — ) for every w € R), then

R(W) :={(x,y) €R?: W (x) <y <W¥T(x)}

Definition [H-convergence] ’

v, & Vg, ass—s iff  R(WVy) LN (Vs,) in the Hausdorff metric




Rotation theory
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If W: R — R is a non-decreasing map of degree-one (i.e. in our case
V(w + (a— B)) = V(w) + (o — ) for every w € R), then

R(W) :={(x,y) €R?: W (x) <y <W¥T(x)}

Definition [H-convergence]

v, & Vg, ass—s iff  R(WVy) LN (Vs,) in the Hausdorff metric ’

We say that (W) is uniformly convergent to W, at xo as s — sp if for each
€ > 0 there exist £ > 0 and § > 0 such that for all s and x satisfying
|s — so| < & and |x — xo| < & we have |Ws(x) — Vs (x0)| < €.



If W: R — R is a non-decreasing map of degree-one (i.e. in our case
V(w + (a— B)) = V(w) + (o — ) for every w € R), then

R(W) :={(x,y) €R?: W (x) <y <W¥T(x)}

Definition [H-convergence]

v, & Vg, ass—s iff  R(WVy) LN (Vs,) in the Hausdorff metric

We say that (W) is uniformly convergent to W, at xo as s — sp if for each

€ > 0 there exist £ > 0 and § > 0 such that for all s and x satisfying

|s — so| < & and |x — xo| < & we have |Ws(x) — Vs (x0)| < . The
H-convergence for non-decreasing degree-one circle maps can be characterised
in a very convenient way:

Proposition (cf. [F.Rhodes,Ch.Thompson, 1991])

If (Ws) is a family of degree-one non-decreasing maps, then W H, Y, as
s — so if and only if (V) is uniformly convergent to Wy at each point of
continuity of W, .
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Theorem (cf. [R.Brette, 2003], [F.Rhodes,Ch.Thompson, 1991])

Suppose that s — &5, s € [c,d], is a family of adaptation maps
with strictly increasing lifts Vs such that the mapping (s,w)
VW (w) is increasing with respect to each variable and s — Vs is
continuous with respect to the topology of H-convergence. Let os
be the rotation number of V. Then:

@ p s ps is continuous and non-decreasing;

e for all p/q € QN Im(p), p~*(p/q) is an interval containing
more than one point, unless it is {c} or {d};

@ p reaches every irrational number at most once;

@ p takes irrational values on a Cantor-type subset of [c, d], up to
a countable number of points



Rotation theory
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Proposition

Let a, b, vg, | and v be fixed and consider d varying in some interval
d € [A\1, A2]. Suppose that for this choice of parameter values a, b,
vgr, | and ~ the adaptation map &4 satisfies conditions I., II., Ill.
and IV.a for any value of d € [A1, \2]

Let o4 denote the unique rotation number obtained for the map
&, (considered on the "fundamental interval” (34, cq]). Then the
mapping p : d — o4 is continuous.

If moreover, for every d € [A\1, \2|, the adaptation map ®, satisfies
®4(Byr,) > Py(n,), then the above mapping p : d — p4 behaves
like a Devil's staircase.




Rotation theory
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() (b) (c)

Rotation Number

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.08

0.082 0.084 0.086 0.088 0.09

Parameter values: v, = 0.1, v = 0.05

0.092




Rotation theory
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> The rotation number 0 = p/q € Q characterises the signature
of MM(B)O:

L3 L3 LT, ...
where L; denotes the number of big oscillations (spikes) and s; is
the number of following them small su threshold oscillations.



Rotation theory
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> The rotation number 0 = p/q € Q characterises the signature
of MM(B)O:

s1 S s3
L3 L2 L8, ..

where L; denotes the number of big oscillations (spikes) and s; is
the number of following them small su threshold oscillations.

For example, o = 1/3 corresponds to the periodic signature 3' and
0 = 3/5 to the periodic signature 2!, 1%, 2!
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Overlapping case: I., Il. and IV. b ¢(8) < ®(a)
The analysis of @ : [3, ] — [, @] in the overlapping regime can be
made via the results of [M. Misiurewicz, 1986] on old heavy maps.
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Overlapping case: I., Il. and IV. b ¢(8) < ®(a)

The analysis of @ : [3, ] — [, @] in the overlapping regime can be
made via the results of [M. Misiurewicz, 1986] on old heavy maps.
Let ¥ : R — R denote the lift of ® [ [, a]. The map V is a degree
one map with only negative jumps. We can define the following:

Definition [Rotation interval [a(V), b(V)]]

VW) —w
a(V) = Vlyg%l;ﬁ;&f a—5)
b(V) := sup limsup Yiw) = w

weR n—o0 n(Oé _6) )

An old heavy map does not need to be monotonous in its intervals
of continuity and therefore:
Remark

If we assume IV.b, then we can skip the assumption |l. since the
induced lift V remains an old heavy map.




Rotation theory
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Define:
Vi(w) = inf{V¥(z):z>w}
V,(w) = sup{¥(z):z<w

The maps V,(w) and V,(w) are continuous and non-decreasing thus
they admit unique rotation numbers.



Rotation theory
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The nontrivial rotation interval corresponds to complex dynamics
(cf. [M. Misiurewicz, 1986]):

a) if ® has a g-periodic point w with the rotation number
o(V,w) = p/q, then a(V) < p/q < b(V);

b) if a(V) < p/q < b(¥), then ® has a periodic point w
of period g and the rotation number o(V, w) = p/q

The coexistence of periodic orbits with infinitely many different
periods (non-triviality of the rotation interval) is also sometimes
called chaos (see [J.P.Keener, 1980]).

Remark

If we additionally assume II., i.e. the monotonicity of ® in the con-
tinuity intervals [, wi) and (wi, «], then every such a periodic orbit
exhibits MMBO (with both one and no small oscillations between
consecutive spikes).
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Theorem (cf. [M. Misiurewicz, 1986])

Suppose that the adaptation map ® : [(3,«] is in the overlapping
case and that for some p1 and g2 we have a(V) < p1 < g2 < b(V).
Then there exists wy such that

Proposition

Choose the fixed parameters vg, a, b, v and | and the parameter
d € [A1,A2] such that for each d € [\, A2] the map ®4 is in the
overlapping case, i.e. satistfies I., Ill. and IV.b. Then the maps
d — a(Vy) and d — b(V,), assigning to d the endpoints of the
rotation interval of ®4, are continuous.
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Moreover, usually the maps d — a(Vy4) and d — b(V4) also
behave as Devil's staircase:

0.6 T T T T T

Rotation Number
=
S

0 " " ' ' ' ' ' '
0.074 0.075 0.076 0.077 0.078 0.079 0.08 0.081 0.082 0.083

Parameter values: v, = 0.1, v = 0.05



Neuron models Geometric mechanism for MMO Rotation theory Conclusions

Theorem (Chaos)

Suppose that & satisfies I., Il., Il and IV. b (an overlapping case
with additional monotonicity condition II.). Further assume also that
®(a) < wy and that ® has at least two periodic orbits, one with
period q1 and the other with period q» # g1 and that exactly one
point of each of these periodic orbits is greater than wy. Then the
mapping w — ®(w) is a shift on a sequence space.

Theorem (Condition for orbits of all periods.)

Existence of a fixed point wg € (3, wi) and a periodic orbit with pe-
riod g > 1 implies existence of periodic orbits with arbitrary periods
G > q and with MMBO. The same holds if wg € (w1, «) provided
that the g-periodic orbit is not of the type q/q (i.e. it admits points
to the left and to the right of wy).

In particular, whenever there is a fixed point wf € (B,a) and a
periodic orbit of the type 1/2, then there are periodic orbits of all
periods, exhibiting MMBO.



n theory
oooo

0.9F

0.8F

0.7F

0.4 -

Rotation Number

03F

0.2F -

0
d 0.088 0.089 0.09 0.091 0.092 0.093 0.094

fy L 1 1 1 1 1 1

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
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Case of both positive and negative jumps: { I., Il. and Il.” } or { I., II.” and 11"}

L B<w <a<w / ..........
Il o< wy < w
II, W* S a < W2 A | V“

1. &(B) < B f

Upper estimate
of the rotation interval:

[0(W1), o(W,)] > [a(w), b(w)] &~
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Proposition

Under the assumptions { 1., Il. and IIl" } or { I, Il" and Ill." }, if
®(a) > wy and there are no fixed points in (wy, ), then ® has an
unstable periodic orbit of period 2. This orbit exhibits MMBO but
it is unstable.

\I’Z

% periodic points of (D of period 2 (lifted to R)




Rotation theory
00000

No discontinuity points in the invariant interval: [.”
Under the following condition

|.//,8<OC<W1

there are no discontinuity points wy or ws in the interval (—oo, ).
This is the easiest situation:

o since ®(w) > w for w < min{;%-, wy, w,.} there must be a
fixed point in (—oo,«) and every point w tends under ¢ to
one of the fixed points. Thus here we observe for every initial
condition tonic, regular spiking (in particular, we have no
MMO and MMBO) and the dynamics is very simple.
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No discontinuity points in the invariant interval and the identity line
passes below the gap at wy: I.”

L7 wy < B <«
Vaw<wm<f<a

Theorem

Suppose that limy, oo ®(w) > wo. Then every point w > wy is
forward asymptotic either to the fixed point wr 1 or to a period two
orbit. Under these assumptions no point w € R exhibits MMO or
MMBO.
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No discontinuity points in the invariant interval and the identity line
passes below the gap at wy: 1.

L wy < B <«

V.b w < B <w <«

Theorem

If ®(w*) < wa, then for every w € (wy, ws) we have w(w) C P,
where P denotes the closure of the set of periodic points of ® :
[wa, wa] — [wi, wp]. Particularly, if the set P is finite, then every w
tends to some periodic orbit (or fixed point) (with no MM(B)O).
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No discontinuity points in the invariant interval and the identity line
passes below the gap at wy: 1.

1" wy < B <«
Vewm < fB<a<w

Theorem
Suppose that < w* < a. If

min ®2(w,) < ®%(wy) < min®1(w,) < wy < O(ws)

and ®(w) > w for w € (8, wy), then ® : [5,a] — [B,«] has an
orbit of period 3. Consequently, ® has cycles of any period. However,
these periodic orbits do not present MMBO.




Conclusions:

. We are able to predict the output properties using geometrical
analysis

. In the overlapping and non-overlapping cases existing mathe-
matical tools of rotation theory provide complete description of
the dynamics of ¢

. In the remaining cases (e.g. of both positive and negative
jumps) one can obtain weaker results on the dynamics of &;
in particular the rotation interval computed via the enveloping
maps WV, and W, gives the upper-estimate for the possible types
p/q of periodic orbits
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Perspectives:

[> For multiple discontinuity points the dynamics is even more com-
plex and harder to be completely classified. However, some
rigorous results can be obtained via the theory of piece-wise
continuous piece-wise monotone maps.

[> Consider forcing of the IF system through variable /. A simple
starting point is a square signal for /(t): the performed analysis
can be generalized using a stroboscopic map.

E:> Tackle the problematic of 3D vector field appearing with two re-
covery variables. In this case we have ® : R? — R?. The gene-
ral mechanism for generating MMBO is the same, yet leading
to richer behaviors due to the geometric structure of the flow.



Thank youl
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